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Abstract

The level set method for compressible 
ows [17] is simple to implement,
especially in the presence of topological changes. However, this method
was shown to su�er from large spurious oscillations in [13]. In [5], a
new Ghost Fluid Method (GFM) was shown to remove these spurious
oscillations by minimizing the numerical smearing in the entropy �eld
with the help of an Isobaric Fix [6] technique. This GFM was designed
for traditional contact discontinuities where the interface moves with
the 
uid velocity only. In this paper, we extend the GFM to multi-
material interfaces where the interface velocity includes a regression
rate due to the presence of chemical reactions converting one material

into another. As a speci�c example, we will consider interface models
for de
agration and detonations discontinuities similar to the work in
[22, 16, 23, 24]. The resulting numerical method is robust and easy to
implement along the lines of [21].
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1 Introduction

In [17], the authors applied the level set method to multiphase compressible


ow. The level set function was used as an indicator function and each

grid point was designated as one 
uid or the other in order to choose the

appropriate equation of state. Then the numerical 
uxes were formed and

di�erenced in the usual manner, see e.g. [21]. In [13], it was shown that this

technique produced large spurious oscillations in the pressure and velocity

�elds. This problem was recti�ed in [10], [4], and [3] with schemes that

involved explicit treatment of the appropriate boundary conditions at the

interface. As a consequence, these schemes are intricate in one dimension

and can only be extended to multiple dimensions with ill-advised dimensional

splitting in time. In addition, multilevel time integrators, such as Runge

Kutta methods, are di�cult to implement for these schemes.

The Ghost Fluid Method (GFM) [5] avoids the oscillations at multimate-

rial interfaces without explicitly applying the interface boundary conditions.

Instead, the GFM creates an arti�cial 
uid which implicitly captures the

boundary conditions at the interface. In the 
avor of the level set method

which implicitly captures the location of the interface, the GFM implic-

itly captures the boundary conditions at the interface. Since the boundary

conditions are implicitly captured by the construction of a ghost 
uid, the

overall scheme becomes easy to implement in multidimensions without time

splitting. In addition, Runge Kutta methods are trivial to apply.

In [5], the GFM was implemented for contact discontinuities where the

interface moves at the 
uid velocity only. In this case, the pressure and

normal velocity of the ghost 
uid are copied over from the real 
uid in a

node by node fashion while the entropy and tangential velocities are de�ned

with the use of a simple partial di�erential equation for one-sided constant

extrapolation in the normal direction. See [5] for details.

In this paper, we will extend the GFM to multimaterial interfaces where

the interface velocity includes a regression rate due to the presence of chemi-

cal reactions converting one material into another. As a speci�c example, we

will consider interface models for de
agration and detonation discontinuities

similar to the work in [22], [16], [23], and [24] where the authors extended

the level set method from [25] to interfaces that represent burning front dis-

continuities. In [25], the authors keep a sharp interface location using the
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level set function, while smearing out the surrounding 
ow variables, e.g.

density. This numerical treatment is not acceptable for de
agration wave

discontinuities since their propagation speed is evaluated as a function of

the exact unburnt gas conditions which are lost when the state variables are

smeared out. In [22], [16], [23], and [24] the authors developed a new \in-cell

reconstruction" technique that gives a sharp representation of the states on

each side of the interface as needed for de
agration discontinuities. Those

authors used the level set method to implicitly capture the interface loca-

tion, while using the \in-cell reconstruction" technique to explicitly enforce

the boundary conditions at the interface. The resulting algorithm is more

e�cient than standard interface tracking techniques, since the interface lo-

cation is captured and not tracked. While the algorithm described in [22],

[16], [23], and [24] utilizes dimensional splitting in time, this is not a neces-

sary condition for the \in-cell reconstruction" technique [12]. However, the

boundary conditions are still explicitly applied. In contrast, the GFM will

implicitly capture the boundary conditions at the interface by the construc-

tion of a ghost 
uid. The resulting numerical method is easy to implement

in multidimensions (without time splitting) and extends trivially to Runge

Kutta methods.
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2 Equations

2.1 Euler Equations

The basic equations for compressible 
ow are the Euler equations,

~Ut + ~F (~U)x + ~G(~U)y + ~H(~U)z = 0 (1)

which can be written in detail as0
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where t is the time, (x; y; z) are the spatial coordinates, � is the density,
~V =< u; v; w > are the velocities, E is the total energy per unit volume, and

p is the pressure. The total energy is the sum of the internal energy and the

kinetic energy,

E = �e +
�(u2 + v2 + w2)

2
(3)

where e is the internal energy per unit mass. The two-dimensional Euler

equations are obtained by setting w = 0, while the one-dimensional Euler

equations are obtained by setting both v = 0 and w = 0.

In general, the pressure can be written as a function of density and

internal energy, p = p(�; e), or as a function of density and temperature,

p = p(�; T ). In order to complete the model, we need an expression for the

internal energy per unit mass. Since e = e(�; T ) we write
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�
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@�

�
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�
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which can be shown to be equivalent to
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p� TpT

�2

�
d� + cvdT (5)
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where cv is the speci�c heat at constant volume. [2]

The sound speeds associated with the equations depend on the partial

derivatives of the pressure, either p� and pe or p� and pT , where the change

of variables from density and internal energy to density and temperature is

governed by the following relations

p� ! p� �

�
p� TpT

cv�
2

�
pT (6)

pe ! p� +

�
1

cv

�
pT (7)

and the sound speed c is given by

c =

r
p� +

ppe

�2
(8)

for the case where p = p(�; e) and

c =

s
p� +

T (pT )
2

cv�
2

(9)

for the case where p = p(�; T ).

2.1.1 Eigensystem

The spatial part of the Euler equations is discretized with an ENO method

[21] which requires the eigensystem listed below. Note that we only list the

two dimensional eigensystem, since there are no three dimensional examples

in this paper. However, the method works well and it is straightforward to

implement in three dimensions as we shall show in a future paper. Once the

spatial part of the Euler equations is discretized, we apply TVDRunge-Kutta

methods for time integration [21].

The eigenvalues and eigenvectors for the Jacobian matrix of ~F (~U) are

obtained by setting A = 1 and B = 0 in the following formulas, while those

for the Jacobian of ~G(~U) are obtained with A = 0 and B = 1.

The eigenvalues are

�1 = û� c; �2 = �3 = û; �4 = û+ c (10)
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and the eigenvectors are
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1
CCCA (16)

where

q2 = u2 + v2; û = Au+ Bv; v̂ = Av �Bu (17)

� =
pe

�
; c =

q
p� +

�p
� ; H =

E + p

�
(18)

b1 =
�

c2
; b2 = 1 + b1q
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The eigensystem for the one-dimensional Euler equations is obtained by

setting v = 0.
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2.2 Level Set Equation

We use the level set equation

�t + ~W � ~5� = 0 (20)

to keep track of the interface location as the zero level of �. In this equa-

tion, ~W is the level set velocity of the interface. In general � starts out as

the signed distance function, is advected by solving equation 20 using the

methods in [9], and then is reinitialized using

�t + S(�o)
�
j~5�j � 1

�
= 0 (21)

to keep � approximately equal to the distance function ( i.e. j~5�j = 1 )

near the interface where we need additional information. We note that our

method allows us to solve equation 20 independently of the Euler equations.

That is, equation 20 can be solved directly using the method in [9], and the

eigensystem for the Euler equations does not depend on �, since we will be

solving only one phase problems with any given eigensystem (see the later

sections). For more details on the level set function see [5, 17, 25].

2.3 Equation of State

For an ideal gas p = �RT where R = Ru
M is the speci�c gas constant, with

Ru � 8:31451 J
molK the universal gas constant and M the molecular weight

of the gas. Also valid for an ideal gas is cp � cv = R where cp is the speci�c

heat at constant pressure. Additionally, gamma as the ratio of speci�c heats


 =
cp
cv
. [8]

For an ideal gas, equation 5 becomes

de = cvdT (22)

and assuming that cv does not depend on temperature (calorically perfect

gas), we integrate to obtain

e = eo + cvT (23)

where eo is not uniquely determined, and we could choose any value for e

at 0K (although one needs to use caution when dealing with more than one

material to be sure that integration constants are consistent with the heat

release in any chemical reactions that occur).

7



Note that we may write

p = �RT =
R

cv
�(e� eo) = (
 � 1)�(e� eo) (24)

for use in the eigensystem.
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3 The GFM for a Contact Discontinuity

The level set function is used to keep track of the interface. The zero level

marks the location of the interface, while the positive values correspond to

one 
uid and the negative values correspond to the other 
uid. Each 
uid

satis�es the Euler equations as described in the last section with di�erent

equations of state for each 
uid. Based on the work in [9], the discretization

of the level set function can be done independently of the two sets of Euler

equations. Besides discretizing equation 20 one needs to discretize two sets

of Euler equations. This is done with the help of ghost cells.

Any level set function de�nes two separate domains for the two separate


uids, i.e. each point corresponds to one 
uid or the other. Ghost cells are

de�ned at every point in the computational domain so that each grid point

contains the mass, momentum, and energy for the real 
uid that exists at

that point (according to the sign of the level set function) and a ghost mass,

momentum, and energy for the other 
uid that does not really exist at that

grid point (the 
uid from the other side of the interface). Once the ghost

cells are de�ned, one can use standard one-phase methods, e.g. see [21], to

update the Euler equations at every grid point for both 
uids. Then the level

set function is advanced to the next time step, and the sign of the level set

function is used to determine which of the two sets of updated 
uid values

should be used as the real 
uid values at each grid point.

Consider a general time integrator for the Euler equations. In general,

one constructs right hand sides of the ordinary di�erential equation for both


uids based on the methods in [21], then the level set function is advanced

to the next time level and the sign of the level set function determines which

of the two right hand sides to use in the time update for the Euler equations.

This can be done for every step and every combination of steps in a multistep

method.

Lastly, we note that only a band of 3 to 5 ghost cells on each side of

the interface is actually needed by the computational method depending

on the stencil and movement of the interface. One can optimize the code

accordingly.
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3.1 De�ning Values at the Ghost Cells

In [5], the GFM was implemented for a contact discontinuity in the Euler

equations. It was apparent that the pressure and normal velocity were con-

tinuous, while the tangential velocity was continuous in the case of a no-slip

boundary condition at the interface but discontinuous for a shear wave. It

was also apparent that the entropy was discontinuous.

For variables that are continuous across the interface, the ghost 
uid

values are set to be equal to the real 
uid values each grid point. Since

these variables are continuous, this node by node population will implicitly

capture the correct interface values of the continuous variables.

Note that the discontinuous variables are governed by a linearly degen-

erate eigenvalue. Thus, they move with the speed of the interface and infor-

mation in these variables should not cross the interface. In order to avoid

numerical smearing of these variables, one-sided constant extrapolation is

used to populate the values in the ghost 
uid. Note that the work in [6]

shows that one does not have to deal directly with the entropy. There are a

few options for the choice of the variable used in extrapolation ranging from

density to temperature.

The extrapolation of the discontinuous variables is carried out in the

following fashion. Using the level set function, de�ne the unit normal at

every grid point as

~N =
~5�

j~5�j
=< n1; n2; n3 > (25)

where ~N always points from the negative 
uid into the positive 
uid. Then

solve the advection equation

It � ~N � ~5I = 0 (26)

for each variable I that needs to be extrapolated. The \+" sign is used to

populate a ghost 
uid in the region where � > 0 with the values of I from

the region where � < 0, while keeping the real 
uid values of I �xed in the

region where � < 0. Likewise, the \-" sign is used to populate a ghost 
uid

in the region where � < 0 with the values of I from the region where � > 0,

while keeping the real 
uid values of I �xed in the region where � > 0. This

equation only needs to be solved for a few time steps to populate a thin band

of ghost cells needed for the numerical method.

Note that the above procedure does not apply an isobaric �x to the cells

in the real 
uid which border the interface. In order to apply the isobaric
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�x, keep the real 
uid values of I �xed in the region where � < �� when

using the \+" sign in equation 26, and keep the real 
uid values of I �xed

in the region where � > � when using the \-" sign in equation 26. Since � is

an approximate distance function, choose � to be the thickness of the band

in which the isobaric �x is to be applied. We use � = 1:54x.

When the need arises to extrapolate the tangential velocity, �rst extrapo-

late the entire velocity �eld, ~V =< u; v; w >. Then, at every cell in the ghost

region there are two separate velocity �elds, one from the real 
uid and one

from the extrapolated 
uid. For each velocity �eld, the normal component

of velocity, VN = ~V � ~N , is put into a three component vector, VN ~N , and

then a basis free projection method (see e.g. [7]) is used to de�ne the two

dimensional velocity �eld in the tangent plane by another three component

vector, ~V �VN ~N . Finally, the normal component of velocity, VN ~N , from the

real 
uid is added to the tangential component of velocity, ~V � VN ~N , from

the extrapolated 
uid to get the ghost 
uid velocity that occupies the ghost

cell.

Once the ghost 
uid values are de�ned as outlined above, they can be

use to assemble the conserved variables for the ghost 
uid.
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4 Extending the Ghost Fluid Method

For a simple contact discontinuity that moves with the speed of the 
uid

only, we were able to separate the variables into two sets based on their

continuity at the interface. The continuous variables were copied into the

ghost 
uid in a node by node fashion in order to capture the correct interface

values. The discontinuous variables were extrapolated in a one-sided fashion

to avoid errors due to numerical dissipation. We wish to apply this idea

to a general interface moving at speed D in the normal direction. That is,

we need to determine which variables are continuous for this more general

problem.

Conservation of mass, momentum, and energy can be applied to an in-

terface in order to abstract continuous variables. One can place a 
ux on

the interface oriented tangent to the interface so that material that passes

through this 
ux passes through the interface. Then this 
ux will move

with speed D (the interface speed) in the normal direction, and the mass,

momentum, and energy which 
ows into this 
ux from one side of the inter-

face must 
ow back out the other side of the interface. That is, the mass,

momentum, and energy 
ux in this moving reference frame are continuous

variables. Otherwise, there would be a mass, momentum, or energy sink

at the interface and conservation would be violated. We denote the mass,

momentum, and energy 
ux in this moving reference frame as F�, ~F�~V , and

FE respectively. The statement that these variables are continuous is essen-

tially equivalent to the Rankine-Hugoniot jump conditions at an interface

moving with speed D in the normal direction. In [22], [16], [23], and [24]

the Rankine-Hugoniot jump conditions were explicitly applied to the inter-

face. We will use the fact that F�, ~F�~V , and FE are continuous to de�ne a

ghost 
uid that captures the interface values of these variables. That is, we

will implicitly capture the Rankine-Hugoniot jump conditions resulting in a

method which is robust and easy to implement.

Remark: Note that numerically F�, ~F�~V , and FE may not be continuous.

This could occur from initial data or wave interactions. However, since we

treat F�, ~F�~V , and FE as though they were continuous in the numerical

method, numerical dissipation will smooth them out. In fact, this numerical

dissipation will help to guarantee the correct numerical solution.

Remark: The level set function is only designed to represent interfaces
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where the interface crosses the material at most once [19, 20]. Simple contact

discontinuities that move with the local material velocity never cross over

material. If one material is being converted into another then the interface

may include a regression rate for this conversion. If the regression rate for

this conversion of one material into another is based on some sort of chemical

reaction, then the interface can pass over a material exactly once changing

it into another material. The same chemical reaction cannot occur to a

material more than once.

Remark: Shocks may be interpreted as the conversion of an uncompressed

material into a compressed material. In this case, D would be the shock

speed. This method could be used to follow a lead shock, but since shocks

can pass over a material more than once, all subsequent shocks must be

captured. A simple example of the GFM for non-reactive shock waves is

presented in a later section, although this approach will be examined in

detail in a future paper [1].

Remark: In the general case, ~F�~V and FE will include general mechanical

stress terms on the interface, e.g. viscosity, surface tension, and material

models. General mechanical stress terms will be considered in future papers.

In this paper, pressure will be the only mechanical stress on the interface.

Remark: In the general case, FE will include general thermal stress on

the interface, e.g. thermal conductivity. Thermal stress will be considered

in a future paper.

To de�ne F�, ~F�~V , and FE , the equations are written in conservation form

for mass, momentum, and energy. The 
uxes for these variables are then

rewritten in the reference frame of a 
ux which is tangent to the interface

by simply taking the dot product with the normal direction,

D
~F (~U); ~G(~U); ~H(~U)

E
� ~N =

0
B@

�

�~V T

E + p

1
CA VN +

0
B@

0

p ~NT

0

1
CA (27)

where VN = ~V � ~N is the local 
uid velocity normal to the interface and the

superscript T designates the transpose. Then the measurements are taken

in the moving reference frame (speed D) to get0
BB@

�

�
�
~V T �D ~NT

�
�e+ �j~V�D ~Nj2

2
+ p

1
CCA (VN �D) +

0
B@ 0

p ~NT

0

1
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from which we de�ne

F� = �(VN �D) (29)

~F�~V = �
�
~V T �D ~NT

�
(VN �D) + p ~NT (30)

FE =

 
�e+

�j~V �D ~N j2

2
+ p

!
(VN �D) (31)

as continuous variables for use in the GFM. That is, we will de�ne the ghost


uid in a node by node fashion by solving the system of equations

FG
� = FR

� (32)

~FG

�~V
= ~FR

�~V
(33)

FG
E = FR

E (34)

at each grid point. Note that the superscript \R" stands for a real 
uid value

at a grid point, while the superscript \G" stands for a ghost 
uid value at

a grid point. Since FR
� , ~F

R
�~v , F

R
E , ~N , and D are known at each grid point,

these can be substituted into equations 32, 33, and 34, leaving �G, ~V G, pG,

and eG undetermined. Since the ghost 
uid is supposed to represent the

real 
uid on the other side of the interface, we use that 
uid's equation of

state as our sixth equation. Thus, populating the ghost nodes requires the

solution of six algebraic equations with six unknowns at each grid point. For

many applications, this is rather trivial compared to applying the Rankine-

Hugoniot jump conditions explicitly to the interface.
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5 De�ning the interface speed D

The interface speed is usually a function of the surrounding materials. For

example, in the case of a simple contact discontinuity, D can be de�ned as

the continuous normal velocity of the two materials at the interface.

In order to update equation 20 for the level set function, one needs to

de�ne the level set velocity, ~W , at every grid point. In the level set capturing

framework, ~W is de�ned everywhere by a function which is continuous in the

normal direction and has an interface value that moves the interface at the

correct interface velocity. This global de�nition of ~W is the one we use to

�nd D for use in solving equations 32, 33, and 34. In a node by node fashion,

we de�ne D = ~W � ~N as the velocity of the interface in the normal direction,

capturing the correct value of D at the interface.

In many cases, D is given and we need to de�ne ~W . In these instances,

we de�ne ~W = D ~N . It is interesting to note that if we start with ~W , de�ne

D = ~W � ~N and then de�ne ~W = D ~N , the �nal result is ~W = ~W ~NT ~N

where the superscript T represents the transpose. While this equation is

obviously false, both ~W and ~W ~NT ~N behave the same in regards to the level

set method. That is,

�t + ~W � ~5� = 0 (35)

and

�t + ( ~W ~NT ~N) � ~5� = 0 (36)

will be analytically equivalent, although there may be slight numerical dif-

ferences.

5.1 A simple contact discontinuity

Consider the case of a simple contact discontinuity where the interface moves

with the local 
uid velocity, i.e. ~W = ~V . Then D = V R
N is the component

of the real 
uid velocity normal to the interface at each point. Equation 32

becomes,

�G(V G
N � V R

N ) = 0 (37)
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implying that V G
N = V R

N . That is, the normal component of the ghost 
uid

velocity should be equal to the normal component of the real 
uid velocity at

each point. Then equation 33 becomes pG = pR implying that the pressure of

the ghost 
uid should be equal to the pressure of the real 
uid at each point.

Equation 34 is then trivially satis�ed and we are left with some freedom. As

shown earlier, the entropy should be extrapolated in the normal direction

along with an Isobaric Fix [6] to minimize \overheating". The tangential

velocities may be extrapolated for a shear wave or copied over node by node

to enforce continuity of the tangential velocities for a \no-slip" boundary

condition.

5.2 De�ning the level set velocity ~W

One issue that needs to be addressed in the level set formulation is how to

de�ne the level set velocity ~W for use in equation 20. In the case of a simple

contact discontinuity, ~W = ~V is just the local 
uid velocity. In more general

cases, the interface speed may be a function of the variables on both sides

of the interface and a general method for constructing ~W is needed.

Suppose that we have an interface which separates two materials with

states represented by ~U (1) on one side of the interface and ~U (2) on the other

side of the interface. In general, the velocity of the interface can be de�ned

by ~W = ~W (~U
(1)

int;
~U
(2)

int) where the \int" subscript represents a variable that

has been interpolated to the interface in a one-sided fashion. Generally, ~W

is a continuous function and application of ~W = ~W (~U (1); ~U (2)) in a node by

node fashion will capture the correct value of ~W at the interface.

In order to apply ~W = ~W (~U (1); ~U (2)) in a node by node fashion, we need

values of ~U (1) and ~U (2) at every node. This means that we need to extend
~U (1) across the interface into the region occupied by ~U (2), and we need to

extend ~U (2) across the interface into the region occupied by ~U (1). In this way,

we will have values of ~U (1) and ~U (2) at every grid point for use in de�ning
~W .

For �rst order accuracy, we use constant extension which is governed by

the advection equation,

It � ~N � ~5I = 0 (38)

for each variable I that we wish to extrapolate. The \�" sign is chosen in

the appropriate way to extend the components of ~U (1) or of ~U (2).
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In general, one only needs extension for a thin band consisting of a few

grid cells near the interface. Once the velocity is computed near the interface,

it can be extended to cover the entire domain using equation 38 with I equal

to each component of ~W and the appropriate choices of the \�" sign.

In some cases, we prefer to work with D instead of ~W . We apply ~D =
~D(~U

(1)
int;

~U
(2)
int) in a node by node fashion and then construct ~W = D ~N .
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6 Examples

Suppose that we have an interface which separates two materials with states

represented by ~U (1) on one side of the interface and ~U (2) on the other side

of the interface. We use equation 38 to extend ~U (1) and ~U (2) so that both

functions are de�ned on a band near the interface.

Once ~U (1) and ~U (2) are de�ned at each point near the interface, we apply

D = (~U (1); ~U (2)) in a node by node fashion near the interface. Then we

de�ne ~W = D ~N in a node by node fashion near the interface and extend

the components of ~W using equation 38 in order to de�ne ~W everywhere.

In fact, in the sense of a local level set method, we only need ~W near the

interface and it may be taken to be zero elsewhere.

Note that all our numerical examples use third order TVD Runge-Kutta

and third order ENO-LLF [21].

6.1 Non-Reacting Shocks

We represent a lead shock by a level set function where the positive values of

� correspond to unshocked material and the negative values of � correspond

to the shocked material. Then the normal, ~N , points from the shocked

material into the unshocked material.

In one spatial dimension, the normal velocity is de�ned as VN = u ~N and

equations 29, 30, and 31 become

F� = �(VN �D) (39)

~F�~V = �(u�D ~NT )(VN �D) + p ~NT (40)

FE =

 
�e+

�ju�D ~N j2

2
+ p

!
(VN �D) (41)

where we �nd it useful to de�ne

F�~VN = ~N ~F�~V = �(VN �D)2 + p (42)
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and to rewrite equation 41 as

FE =

 
�e +

�(VN �D)2

2
+ p

!
(VN �D) (43)

using the fact that ~N = �1 in one dimension. This allows us to write

equations 32, 33, and 34 as

�G(V G
N �D) = FR

� (44)

�G(V G
N �D)2 + pG = FR

�~VN
(45)

 
�GeG +

�G(V G
N �D)2

2
+ pG

!
(V G

N �D) = FR
E (46)

where FR
� , F

R

�~VN
, FR

E , and D can be evaluated at each grid point. If we add

the equation of state for the ghost 
uid as

pG = (
G � 1)�GeG (47)

we can solve four equations in four unknowns which we arrange into a

quadratic for V G
N �D and solve to get

V G
N �D =


GFR

�~VN

(
G + 1)FR
�

�

vuut 
GFR

�~VN

(
G + 1)FR
�

!2

�
2(
G � 1)FR

E

(
G + 1)FR
�

(48)

as our two solutions. Once we decide which of the two solutions for V G
N to

use, we use equation 44 to �nd �G, equation 45 to �nd pG, and equation 47

to �nd eG. In addition, we have uG = V G
N
~N .

In order to choose the correct solution from equation 48, one has to know

whether or not the ghost 
uid is an unshocked 
uid or a shocked 
uid. Node

by node, the real values of the unshocked 
uid are used to create a shocked

ghost 
uid to help in the discretization of the shocked real 
uid. Likewise,

the real values of the shocked 
uid are used to create an unshocked ghost


uid to help in the discretization of the unshocked real 
uid. If the ghost


uid is a shocked 
uid, then we want D to be subsonic relative to the 
ow,

i.e. V G
N � cG < D < V G

N + cG or jV G
N �Dj < cG. On the other hand, if the

ghost 
uid is an unshocked 
uid, then we want D to be supersonic relative
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to the 
ow, i.e. jV G
N �Dj > cG. Based on this discussion, we choose the \�"

sign in equation 48 to give the minimum value of jV G
N �Dj when constructing

a shocked ghost 
uid and the maximum value of jV G
N �Dj when constructing

an unshocked ghost 
uid.

For a simple non-reacting shock, we may de�ne the shock speed D di-

rectly from the mass balance equation as

D =
�(1)u(1) � �(2)u(2)

�(1) � �(2)
(49)

in a node by node fashion. However, this simple de�nition of the shock speed

will erroneously give D = 0 in the case of a standard shock tube problem

where both 
uids are initially at rest. A somewhat better estimate of the

shock speed can be derived by combining equation 49 with the momentum

balance equation to get

D =

s
�(1) (u(1))

2
+ p(1) � �(2) (u(2))

2
� p(2)

�(1) � �(2)
(50)

where the shock speed is now dependent on the pressure as well.

Note that equations 49 and 50 are approximations for D. Clearly, these

approximations will lead to nonphysical values of D in certain situations. In

fact, D could be in�nite or imaginary. A more robust, but still approximate

value for D can be obtained by evaluating D = VN + c with the Roe average

of ~U (1) and ~U (2), since this is the exact shock speed for an isolated shock

wave and never becomes ill-de�ned. Of course, the best de�nition of the

shock speed can be derived by solving the Riemann problem for the states
~U (1) and ~U (2), although this generally requires an iteration procedure (this

approach will be followed in a future paper [1]).

6.1.1 Example 1

In this example, a single shock wave moving to the right is taken from [24].

We use a 1m domain with 100 grid points and the interface located at x =

:5m which is exactly in between the 50th and 51st grid points. We use


 = 1:4 and M = :040 kg

mol for both gases. Initially, we set � = 2:124 kg

m3 ,

u = 89:981ms , and p = 148407:3Pa on the left, and � = 1:58317 kgm3 , u = 0ms ,

and p = 98066:5Pa on the right. Figure 1 shows the solution at t = :001s

with a standard shock capturing scheme. Note that the standard scheme
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smears out this perfect shock and creates numerical artifacts in the process,

e.g. there is a glitch near x = :6 in the density and temperature.

Figure 2 shows the numerical solution computed with equation 50 as the

shock speed for the GFM. Note that the GFM avoids numerical dissipation

at the interface and the related artifacts.

The exact solution is plotted as a solid line in both �gures.

6.1.2 Example 2

Next, we set up a shock tube problem by changing the left state in example

1 to � = 3 kg
m3 , u = 0m

s , and p = 2� 105Pa while still plotting the results at

t = :001s. The results with a standard shock capturing scheme are shown

in �gure 3 and those with the GFM and equation 50 are shown in �gure

4. Note that the small glitch on the left hand side of the shock disappears

when the shock speed equilibrates later in time. In addition, a more resolved

calculation will achieve a 
at pro�le in a shorter time, e.g. the same calcu-

lation with 400 grid points has no visible glitch as can be seen in �gure 5.

We also note that convergence to the exact Riemann solution was observed

upon grid re�nement. The exact solution is plotted as a solid line in all 3

�gures.

6.2 Detonations

Strong detonations and Chapman-Jouguet detonations can be approximated

as reacting shocks under the assumption that the reaction zone has negligible

thickness. We represent the unreacted material with positive values of � and

the reacted material with negative values of �. Then the normal, ~N , points

from the reacted material into the unreacted material.

Equations 44, 45, and 46 are still valid, while equation 47 becomes

pG = (
G � 1)�G(eG � eGo ) (51)

where we can no longer set eo = 0 for both 
uids. In detonations, the jump

in eo across the reaction front indicates the energy release in the chemical

reaction.

Equation 48 becomes

V G
N �D =


GFR

�~VN

(
G + 1)FR
�

�

vuut 
GFR

�~VN

(
G + 1)FR
�

!2

�
2(
G � 1)

(
G + 1)

 
FR
E

FR
�

� eGo

!
(52)
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where we choose the \�" sign to give the minimum value of jV G
N �Dj when

constructing a reacted ghost 
uid and the maximum value of jV G
N �Dj when

constructing an unreacted ghost 
uid.

We use equation 50 for the detonation speed D, although one may wish

to consult a Riemann solver, e.g. see [26].

6.2.1 Example 3

In this example, a single overdriven detonation wave moving to the right

is taken from [16]. We use an 8m domain with 100 grid points and the

interface located at x = 4m which is exactly in between the 50th and 51st

grid points. We use 
 = 1:27 in both gases, whileM = :015 kg

mol
in the unburnt

gas and M = :018 kg

mol in the burnt gas. Initially, we set � = 1:57861 kgm3 ,

u = 2799:82ms , and p = 7707520Pa on the left, and � = :601 kg
m3 , u = 0m

s ,

and p = 1� 105Pa on the right. In addition, we have eo =
242000
:018

J
kg in the

unburnt gas and eo = 0 in the burnt gas. Figure 6 shows the solution at

t = :0005s after it has moved from x = 4m to about x = 6:26m at a speed

of about 4521ms . The exact solution is plotted as a solid line in the �gure.

6.2.2 Example 4

Next, we take the overdriven detonation from example 3, increase the reso-

lution of the problem to 800 grid cells (801 grid points), and start the deto-

nation at x = :175m which is exactly between the 18th and 19th gird points.

A solid wall boundary condition is enforced at x = 0, creating a rarefaction

wave that will catch up with the overdriven detonation and weaken it to a

Chapman-Jouguet detonation as in [16]. Figure 7 shows the pressure pro�le

at t = :00135s and �gure 8 shows a plot of the peak post-detonation pressure

at each grid point. Note that the post detonation pressure is approaching

the Chapman-Jouguet pressure of 4518507Pa.

6.3 De
agrations

For a de
agration, we represent the unreacted material with positive values of

� and the reacted material with negative values of � so that the normal points

from the reacted material into the unreacted material. We use equations 44,

45, and 46 along with equation 51 where the jump in eo across the reaction
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front indicates the energy release in the chemical reaction. Equation 52 is

valid, however, since a de
agration is subsonic we choose the \�" sign to

give the minimum value of jV G
N � Dj for both the reacted and unreacted

ghost 
uids.

For a de
agration, the Riemann problem is not well posed unless the

speed of the de
agration is given [11, 26]. Luckily, there is a large amount

of literature on the G-equation for 
ame discontinuities. The G-equation

was originally proposed in [15] and later discussed in [27]. The G-equation

represents the 
ame front as a discontinuity in the same way as the level set

method. Thus, one can consult the literature on the G-equation to obtain

de
agration speeds for the GFM.

6.3.1 Example 5

In this example, we consider a single de
agration wave moving to the right

with the de
agration velocity taken from [11] and [26] as

D = V
(2)

N + 3:00� 10�9 s
3

m3

 
p(2)

�(2)

!2

(53)

where we have redimensionalized the problem. Note that the superscript

\(2)" stands for an unburnt gas quantity. We use a 1:6m domain with 100

grid points and the interface located at x = :8m which is exactly in between

the 50th and 51st grid points. We use 
 = 1:4 and M = :029 kg
mol in both

gases. Initially, we set � = :142168 kgm3 , u = �181:018ms , and p = 94569:5Pa

on the left, and � = 1 kg

m3 , u = 0m
s , and p = 1 � 105Pa on the right. In

addition, we have eo = 2:0 � 106 J
kg

in the unburnt gas and eo = 0 in the

burnt gas. Figure 9 shows the solution at t = :01s after it has moved from

x = :8m to about x = 1:1m at a speed of about 30:0m
s
. The exact solution

is plotted as a solid line in the �gure.

6.3.2 Example 6

Next, we take the de
agration from example 5 and enforce a solid wall bound-

ary condition at x = 0. It is important to note that a re
ection boundary

condition is applied to the level set function too. That is, we start with

� = x� :024m and after applying the re
ection boundary condition we have

� = jxj � :024m as initial data. This initial data assumes that the entire
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domain is unburnt (the right state above), except for a small region near the

solid wall which we assume to be burnt (the left state above).

Due to the in
uence of the solid wall, we initially set the velocity of the

burnt state to be identically zero (not �181:018ms ). Since the solid wall

prevents the de
agration from accelerating the burnt gas to the left, a shock

wave forms to the right of the de
agration. This shock wave pre-accelerates

the unburnt gas to the right, so that the acceleration of the gas to the left

by the de
agration wave is approximately canceled, resulting in a burnt gas

velocity near zero as forced by the solid wall.

Figure 10 shows the de
agration wave at t = :002s when it located near

x = :5m moving to the right at approximately 278m
s . Note the captured

shock wave near x = :95m. In addition, note that the overheating errors in

temperature and density at the wall could be minimized with the Isobaric

Fix [6].

An important technical detail concerns the treatment of the normal in the

burnt region near the wall. There are exactly three burnt points consisting

of one at x = 0, one to the right of x = 0, and a solid wall boundary

re
ected point just to the left of x = 0. The normal ~N will be unde�ned at

x = 0 if standard central di�erencing is used to compute it. Thus, one must

be careful when computing ~N with a standard central di�erence. In these

cases we resort to one-sided di�erencing to compute the normal. In this

particular example, essentially equivalent results are obtained regardless of

which direction we use to compute the one-sided di�erence. Inherently, this

is a problem with level sets in under-resolved regions since local extrema

may occur near the zero level. However, this is only a problem when the

extrema are positioned exactly on a grid node which is unusual except for

initial data. For our purposes, we address this problem by assigning a normal

in an arbitrary direction by choosing one-sided di�erencing in an arbitrary

direction.

6.3.3 Example 7

Once again, we will consider de
agration waves with velocities determined

by equation 53. We use a 1:6m domain with 801 grid points and a solid wall

boundary condition at x = 0. Initially, � = jx� :078mj � :003m where the

three grid points at x = :076m, x = :078m, and x = :08m designate a burnt

gas with � = :2082 kgm3 , u = 0ms , p = 140720Pa, and eo = 0. The rest of

the domain is an unburnt gas with � = 1 kg
m3 , u = 0ms , p = 1 � 105Pa, and
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eo = 2:0� 106 J
kg
. In both gases, 
 = 1:4 and M = :029 kg

mol
.

The solution consists of two de
agration waves moving outward from

x = :078m (in opposite directions). Since the burnt gas is con�ned between

these de
agrations, it must have a near zero velocity inducing shock waves

in front of the de
agrations as can be seen in �gure 11 at t = :000147s where

the de
agrations are located near x = :043 and x = :113 and the shocks are

located near x = :01 and x = :146.

The leftgoing shock wave will re
ect o� the solid wall boundary, change

direction, and then intersect the leftgoing de
agration near x = :02m causing

it to slow down (although it eventually reaches the wall and burns out). The

transmitted shock eventually catches up with the rightgoing de
agration near

x = :175m causing it to accelerate to the right. The resulting transmitted

shock will eventually overtake the lead rightgoing shock. Figure 12 shows

a time history of the location of the de
agration waves and �gure 13 shows

the pressure at t = :0022s.

6.4 Example 8

In this example, we compare our results for shock de
agration interactions

with exact solutions from [18] using the de
agration velocity

D = V
(2)

N + 18:5

 
p(2)

101000Pa

!:1 
T (2)

298K

!1:721
m

s
(54)

where the superscript \(2)" stands for an unburnt gas quantity. We use

a 1m domain with 400 grid points and the interface located at x = :5m.

We use 
 = 1:4, M = :021 kg
mol , and eo = 3:38 � 106 J

kg in the unburnt gas

corresponding to a stoichiometric hydrogen air mixture. We use 
 = 1:17,

M = :026 kg
mol , and eo = 0 in the burnt gas. The burnt gas is on the left of

the interface and the unburnt gas is on the right of the interface.

The �rst case consists of a leftgoing shock starting at x = :6m with

preshock states of � = 1:587 kg

m3 , u = 283:2m
s
, and p = 249; 900Pa on the left,

and postshock states of � = 2:128 kg

m3 , u = 139:9ms , and p = 378; 200Pa on

the right. The burnt gas has initial states of � = :4289 kg

m3 , u = 194:8m
s
, and

p = 244; 800Pa. The shock hits the de
agration and the collision results in

four waves shown in �gure 14 at t = :00065s as a shock, contact, de
agration,

and rarefaction from left to right. Our method agrees well with the exact

solution capturing all waves except the de
agration wave which is tracked

with the level set function.

25



The second case consists of a rightgoing shock starting at x = :4m with

postshock states of � = :3809 kg

m3 , u = 555:1ms , and p = 241; 100Pa on the left,

and preshock states of � = :1859 kg

m3 , u = �61:96m
s
, and p = 102; 700Pa on

the right. The unburnt gas has initial states of � = :8672 kg

m3 , u = 6:762ms , and

p = 103; 900Pa. The shock hits the de
agration and the collision results in

four waves shown in �gure 15 at t = :0006s as a shock, contact, de
agration,

and shock from left to right. Our method agrees well with the exact solution

capturing all waves except the de
agration wave which is tracked with the

level set function.

6.5 Multidimensions

In multidimensions, the normal velocity is de�ned as VN = ~V � ~N , equation

29 is still

F� = �(VN �D) (55)

and we can still de�ne

F�~VN = ~N ~F�~V = �(VN �D)2 + p (56)

for use in the method. In addition, we de�ne

~F�~VT =
~F�~V � F�~VN

~NT

F�
= ~V T � VN ~NT (57)

as a valid expression when VN 6= D (a contact discontinuity). The necessary

continuity of this expression implies the well known fact that tangential

velocities are continuous across shocks, detonations, and de
agrations. Note

that the tangential velocities are not necessarily continuous across a contact

discontinuity.

Next, we write

j~V �D ~N j2 = j~V j2 � 2DVN +D2 = j~V j2 � V 2
N + (VN �D)2 (58)

and de�ne the velocities in the tangent directions T1 and T2 as VT1 and VT2
so that we may use

j~V j2 = V 2
N + V 2

T1 + V 2
T2 (59)
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in order to obtain

j~V �D ~N j2 = V 2
T1 + V 2

T2 + (VN �D)2 (60)

which is plugged into equation 31 resulting in

FE =

 
�e+

�(V 2
T1 + V 2

T2)

2
+
�(VN �D)2

2
+ p

!
(VN �D) (61)

as a rewritten version of equation 31.

Next we de�ne

F̂E = FE �
F�(V

2
T1 + V 2

T2)

2
=

 
�e+

�(VN �D)2

2
+ p

!
(VN �D) (62)

and use this equation along with equation 55, equation 56 and the equation

of state for the ghost 
uid

pG = (
G � 1)�G(eG � eGo ) (63)

to obtain

V G
N �D =


GFR

�~VN

(
G + 1)FR
�

�

vuut 
GFR

�~VN

(
G + 1)FR
�

!2

�
2(
G � 1)

(
G + 1)

 
F̂R
E

FR
�

� eGo

!
(64)

which is identical to equation 52 in every way, since our de�nition of F̂E in

multidimensions is identical to the de�nition of FE in one-dimension.

To summarize, we use equation 64 to �nd V G
N , with the proper choice of

the \�00 sign outlined in the one dimensional cases. Then we use equation

55 to �nd �G, equation 56 to de�ne pG, and equation 63 to �nd eG. The

velocity, ~V G is obtained by combining the normal velocity of the ghost 
uid

with the tangential velocity of the real 
uid through the equation

~V G = V G
N
~N + ~V R � V R

N
~N (65)

where V R
N = ~V R � ~N is the normal velocity of the real 
uid. Note that we

never use the tangent directions so that the method is simple to apply in

three dimensions.
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6.6 Example 9

This problem is similar to the example in section 5.1 of [24]. Consider a 1m

square domain with 100 grid cells in each direction. Two circular regions

of burnt gas are centered at (:425m; :425m) and at (:575m; :575m) with a

radius of :02m each. The rest of the domain is de�ned as unburnt gas. Both

the burnt gas and the unburnt gas are de�ned as in example 5, except we

set u = v = 0ms in the burnt gas similar to example 6.

In each circular region, a shock wave will form and travel outward pre-

accelerating the unburnt gas similar to the one-dimensional result calculated

in example 6. Since there are two circular regions, these shock waves will in-

tersect each other and interfere with the circular growth of the burnt regions

distorting their shape. Figure 16 and �gure 17 show the interface locations

before and after merging corresponding to :0008 seconds and :001 seconds,

respectively.

In �gure 18 and �gure 19 we plot square cells which are color coded based

on the density values at the cell centers. A color bar is included to the right

of each �gure to illustrate the discontinuous density pro�le at the interface.

The density jumps more than 1 kg

m3 without the presence of intermediate

values due to numerical dissipation. Note that the \white" region away from

the interface is due to shock wave compressions.

28



0 0.2 0.4 0.6 0.8 1

1.6

1.7

1.8

1.9

2

2.1

den

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

80

90

100
vel

0 0.2 0.4 0.6 0.8 1
295

300

305

310

315

320

325

330

335

340

temp

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

x 10
5 press

Figure 1: Single Shock (Standard Shock Capturing Scheme)
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Figure 2: Single Shock (Ghost Fluid Method)
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Figure 3: Shock Tube (Standard Shock Capturing Scheme) - 100 grid points
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Figure 4: Shock Tube (Ghost Fluid Method) - 100 grid points
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Figure 5: Shock Tube (Ghost Fluid Method) - 400 grid points
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Figure 6: Overdriven Detonation
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Figure 7: Overdriven Detonation at t = :00135s
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Figure 8: Spatial History of the Peak Pressure
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Figure 10: De
agration Wave with a Precursor Shock Wave
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Figure 13: De
agration Wave at t = :0022s

41



0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

den

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

vel

0 0.2 0.4 0.6 0.8 1

400

600

800

1000

1200

1400

1600

1800

2000
temp

0 0.2 0.4 0.6 0.8 1

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

x 10
5 press

Figure 14: De
agration interaction with a leftgoing shock
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Figure 15: De
agration interaction with a rightgoing shock
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Figure 16: Before merging - .0008 seconds
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Figure 17: After merging - .001 seconds
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Figure 18: Before merging - .0008 seconds
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Figure 19: After merging - .001 seconds
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